Welcome Guest | Login | Home | Contact Us
Hybrid Random Fields A Scalable Approach to Structure and Parameter Learning in Probabilistic Graphical Models 1st Edition,3642203078,9783642203077

Hybrid Random Fields A Scalable Approach to Structure and Parameter Learning in Probabilistic Graphical Models 1st Edition

by  ,

Hardback

$ 179.00

$ 125.74
Save $ 53.26

Enquire about this book

Available

Usually Ships in 1 Days.

Ships From New York

Free Shipping within U.S.A

International Shipping?

Check Delivery Estimate and Shipping Cost for your country


Book Information

Publisher:Springer
Published In:2011
ISBN-10:3642203078
ISBN-13:9783642203077
Binding Type:Hardback
Weight:2.71 lbs
Pages:pp. xviii + 210, 17 Illus.

The Title "Hybrid Random Fields A Scalable Approach to Structure and Parameter Learning in Probabilistic Graphical Models 1st Edition" is written by Edmondo Trentin. This book was published in the year 2011. The ISBN number 3642203078|9783642203077 is assigned to the Hardback version of this title. The book displayed here is a 1st Edition edition. This book has total of pp. xviii + 210 (Pages). The publisher of this title is Springer. We have about 138114 other great books from this publisher. Hybrid Random Fields A Scalable Approach to Structure and Parameter Learning in Probabilistic Graphical Models 1st Edition is currently Available with us.

Related Books

Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series 1st Edition,0387961410,9780387961415

Parameter Estimation and ...

K. Dzhaparidze

Our Price: $ 123.68

Stationary Sequences and Random Fields 1st Edition,0817632646,9780817632649
30 %

Stationary Sequences and ...

Murray Rosenbla ...

List Price: $ 139.00

Our Price: $ 97.72

Introduction to Random Processes,0387907572,9780387907574
29 %

Introduction to Random Pr ...

Eugene Wong

List Price: $ 99.00

Our Price: $ 70.28

The Simplex Method A Probabilistic Analysis 1st Edition,3540170960,9783540170969
27 %

The Simplex Method A Prob ...

Karl Heinz Borg ...

List Price: $ 109.00

Our Price: $ 79.17

Probabilistic Methods in Structural Engineering,0412222302,9780412222306
32 %

Probabilistic Methods in ...

Guilian Augusti

List Price: $ 490.00

Our Price: $ 330.99

Random Processes for Classical Equations of Mathematical Physics 1st Edition,079230036X,9780792300366
31 %

Random Processes for Clas ...

S.M. Ermakov

List Price: $ 189.00

Our Price: $ 131.26

About the Book

This Book presents an exciting new synthesis of directed and undirected, discrete and continuous graphical models. Combining elements of Bayesian networks and Markov random fields, the newly introduced hybrid random fields are an interesting approach to get the best of both these worlds, with an added promise of modularity and scalability. The authors have written an enjoyable book---rigorous in the treatment of the mathematical background, but also enlivened by interesting and original historical and philosophical perspectives.
-- Manfred Jaeger, Aalborg Universitet

The book not only marks an effective direction of investigation with significant experimental advances, but it is also---and perhaps primarily---a guide for the reader through an original trip in the space of probabilistic modeling. While digesting the book, one is enriched with a very open view of the field, with full of stimulating connections. [...] Everyone specifically interested in Bayesian networks and Markov random fields should not miss it.
-- Marco Gori, Università degli Studi di Siena


Graphical models are sometimes regarded---incorrectly---as an impractical approach to machine learning, assuming that they only work well for low-dimensional applications and discrete-valued domains. While guiding the reader through the major achievements of this research area in a technically detailed yet accessible way, the book is concerned with the presentation and thorough (mathematical and experimental) investigation of a novel paradigm for probabilistic graphical modeling, the hybrid random field. This model subsumes and extends both Bayesian networks and Markov random fields. Moreover, it comes with well-defined learning algorithms, both for discrete and continuous-valued domains, which fit the needs of real-world applications involving large-scale, high-dimensional data.

Book Reviews by Users
Book Reviews of Hybrid Random Fields A Scalable Approach to Structure and Parameter Learning in Probabilistic Graphical Models 1st Edition
Have you read this book?
Be the first to rate it

 
Write a Review